Exercise 37

Boyle's Law states that when a sample of gas is compressed at a constant temperature, the pressure P and volume V satisfy the equation $P V=C$, where C is a constant. Suppose that at a certain instant the volume is $600 \mathrm{~cm}^{3}$, the pressure is 150 kPa , and the pressure is increasing at a rate of $20 \mathrm{kPa} / \mathrm{min}$. At what rate is the volume decreasing at this instant?

Solution

Solve the given formula for the volume.

$$
V=\frac{C}{P}
$$

Take the derivative of both sides with respect to time by using the chain rule.

$$
\begin{aligned}
\frac{d}{d t}(V) & =\frac{d}{d t}\left(\frac{C}{P}\right) \\
\frac{d V}{d t} & =-\frac{C}{P^{2}} \cdot \frac{d P}{d t} \\
& =-\left(\frac{C}{P}\right) \frac{1}{P} \frac{d P}{d t} \\
& =-(V) \frac{1}{P} \frac{d P}{d t} \\
& =-\frac{V}{P} \frac{d P}{d t}
\end{aligned}
$$

Therefore, at the instant that the volume is $600 \mathrm{~cm}^{3}$, the pressure is 150 kPa , and the pressure is increasing at a rate of $20 \mathrm{kPa} / \mathrm{min}$, the rate of change of the volume is

$$
\left.\frac{d V}{d t}\right|_{\substack{V=600 \\ P=150}}=-\frac{600}{150}(20)=-80 \frac{\mathrm{~cm}^{3}}{\min }
$$

The minus sign indicates that the volume decreases as time goes on.

